Фейсбук. ВКонтакте. Путешествия. Подготовка. Интернет-профессии. Саморазвитие
Поиск по сайту

Обработка твердых материалов. Резание труднообрабатываемых материалов. DjVu. Гидроабразивная резка: преимущества и особенности

Высокотехнологичный и сложный процесс, для выполнения которого требуется особое оборудование и специальный инструмент. Это связано с тем, что подобные сплавы обладают высокой упругостью и прочностью, а потому сильно противостоят резанию, сверлению, шлифовке и прочим механическим обработкам. При этом качество соответствующего процесса во многом зависит от характеристик металла и правильного подбора режущего инструмента.

Особенности твердых сплавов

К труднообрабатываемым металлам относятся жаропрочные и нержавеющие стали и сплавы. Эти материалы представляют собой твердый раствор аустенитного класса, поэтому им присущи такие качества, как высокое сопротивление к коррозии, способность работать в напряженном состоянии на протяжении длительного времени, стойкость к химическому разрушению. Кроме этого, некоторым видам данных металлов присуща структура высокой дисперсности. За счет этого процесс скольжения практически не происходит.

Также усложняется обработка по следующим причинам:

  • при резке происходит упрочнение материала;
  • сплавы такого характера обладают низкой теплопроводностью, а потому контактная часть обрабатываемой детали и инструмента начинают схватываться;
  • сохраняется исходная прочность даже при очень высокой температуре;
  • высокая истирающая способность сплавов приводит к образованию включений, которые негативно отражаются на инструменте;
  • виброустойчивость металлов обуславливается неравномерное протекание процесса резания, а значит, получить желаемое качество обработки не получится.

Подбор инструмента

Для того чтобы избежать всех вышеописанных проблем и провести качественную обработку твердых сплавов, необходимо в первую очередь правильно подобрать инструмент. Он должен быть изготовлен из металла, который обладает более высокими режущими свойствами, чем обрабатываемая деталь. При этом для предварительной обработки специалисты рекомендуют использовать твердосплавными резцами, а для чистовой - быстрорежущие. К последним относятся стали марок Р14Ф4, Р10К5Ф5, Р9Ф5, Р9К9.

Для изготовления инструмента из твердосплавных металлов используют три вида сплавов:

  • Т30К4, Т15К6, ВКЗ - износостойкие;
  • Т5К7, Т5К10 - отличаются высокой вязкостью;
  • ВК6А, ВК8 - нечувствительны к ударам, обладают наименьшим сопротивлением к износу.

Для упрочнения инструментов и повышения их рабочих характеристик дополнительно проводят нанесение второго слоя твердосплавного металла, цианирование, хромирование, плакирование.

СОЖ

Правильный подбор охлаждающих жидкостей и способа их применения - не менее важный процесс в том случае, если необходимо произвести обработку твердых сплавов. Для сверления специалисты рекомендуют использовать материалы на минеральной основе. Особенно они повышают производительность при работе с титаном, который очень сложен в работе. Для токарной обработки легированных сталей подойдет полусинтетические СОЖ, для хонингования и шлифовки чугуна - жидкость без минеральных масел. Также существуют универсальные материалы, которые очень выгодно использовать в том случае, если характер обработки металла постоянно меняется.

Наиболее оптимальный способ подачи СОЖ при работе с твердыми металлами считается высоконапорный, при котором жидкость подается тонкой струей на заднюю стенку инструмента. Не менее эффективными являются распыление жидкости и охлаждение углекислотой. Все это позволяет повысить стойкость инструмента и улучшить качество обработки.

Требования к оборудованию

Оборудование для обработки твердых металлов разительно отличается от стандартных станков. Подобные модели отличаются:

  • повышенной жесткостью всех механизмов;
  • виброустойчивостью;
  • высокой мощностью;
  • наличием каналов для отвода стружки;
  • особые места посадки для фиксации короткого инструмента.

Твердые металлы и сплавы представляют собой износостойкие материалы, способные сохранять свои характеристики при повышенных температурах (900-1100 градусов). Они известны человеку более ста лет.

Общая характеристика

Твердые сплавы изготавливаются преимущественно на основе хрома, тантала, титана, вольфрама с добавлением различного количества никеля или кобальта. При производстве используются прочные карбиды, не подверженные разложению и растворению при высокой температуре. Твердый сплав может быть литым или спеченным. Карбиды отличаются хрупкостью. В этой связи для формирования твердого материала их зерна связывают подходящими металлами. В качестве последних выступают железо, кобальт, никель.

Литые соединения

Твердосплавный инструмент, полученный указанным способом, отличается высокой сопротивляемостью к истиранию материалом заготовки и сходящей стружки. Они не теряют своих характеристик при температуре нагрева от 750 до 1100 градусов. Установлено, что изделиями, произведенными путем плавки или литья с добавлением килограмма вольфрама, можно обработать в пять раз больше материала, чем предметами из быстрорежущей стали при таком же содержании W. Одним из недостатков таких соединений выступает их хрупкость. При уменьшении в составе доли кобальта она повышается. Скорость, которой обладают твердосплавные резцы, в 3-4 раза превышает показатели для стали.

Спеченные материалы

Они включают в себя металлоподобное соединение, связанное сплавом или металлом. В качестве основы, как правило, используется карбид (сложный в том числе) титана или вольфрама, а также тантала, карбонид титана. Реже при изготовлении применяют бориды. Матрицей для удержания зерен материала выступает связка - сплав или металл. Как правило, ею является кобальт. Это нейтральный по отношению к углероду элемент. Кобальт не образует собственные карбиды и не разрушает другие. Реже в связке используется никель и его соединение с молибденом.

Сравнительная характеристика

Спеченные материалы получают порошковым методом. Обработка твердых сплавов этого типа осуществляется только шлифованием либо физико-химическими способами (лазером, травлением в кислотах, ультразвуком и прочими). Литые изделия подвергаются закалке, отжигу, старению и так далее. Они предназначены для наплавки на инструмент. Порошковые материалы прикрепляют посредством пайки или механическим способом.

Классификация

Она зависит от содержания карбидов кобальта, тантала, вольфрама и титана. В этой связи рассматриваемые материалы разделяются на три группы. При обозначении марок соединений используют буквы:

  1. Карбид вольфрама - "В".
  2. Кобальт - "К".
  3. Карбид титана - первая "Т".
  4. Карбид тантала - вторая "Т".

Цифры, указанные после букв, обозначают приблизительное процентное содержание компонентов. Остальное в соединении (до 100 %) - карбид вольфрама. Указанные в конце буквы обозначают зернистость структуры: "В" - крупная, "М" - мелкая, "ОМ" - особо мелкая. Промышленность выпускает твердые сплавы марок ВК (вольфрамовые), ТТК (титанотанталовольфрамовые) и ТК (титановольфрамовые).

Отличительные признаки

Основные свойства твердых сплавов заключаются в их высокой прочности, износостойкости. При этом рассматриваемые материалы отличаются меньшей вязкостью и теплопроводностью в сравнении со сталью. Это необходимо учитывать при эксплуатации изделий. Выбирая твердый сплав, необходимо придерживаться ряда рекомендаций:

  1. Вольфрамовые изделия в сравнении с титановольфрамовыми отличаются меньшей температурой свариваемости со сталью. В этой связи их используют для работы с чугуном, цветными металлами и неметаллическими материалами.
  2. Для стали целесообразно использовать соединения группы ТК.
  3. Твердый сплав марки ТТК обладает повышенной вязкостью и точностью. Его применяют для работы со стальными поковками, отливками в неблагоприятных условиях.
  4. Чистовое и тонкое точение с небольшим сечением стружки обеспечивают борфрезы твердосплавные с мелкозернистой структурой и меньшим содержанием кобальта.
  5. При неблагоприятных условиях и черновой работе с материалами с ударной нагрузкой целесообразно использовать соединения с высоким содержанием кобальта. При этом они должны обладать крупнозернистой структурой.
  6. Чистовая и черновая обработка в процессе непрерывного резания осуществляются преимущественно соединениями со средним процентным содержанием кобальта.

Порошкообразные материалы

Они представлены двумя группами: содержащие и не содержащие вольфрам. В первом случае твердый сплав представлен в виде смеси технического порошкообразного W и ферровольфрама с науглероживающими компонентами. Изготавливался он еще в СССР. Называется этот твердый сплав "вокар". Процесс изготовления материала следующий:

  1. Высокопроцентный ферровольфрам и технический порошкообразный W смешиваются с молотым коксом, сажей и прочими аналогичными компонентами.
  2. Полученная масса замешивается на сахарной патоке или смоле в густую пасту.
  3. Из смеси прессуются брикеты, которые слегка обжигаются. Это необходимо для удаления летучих соединений.
  4. Брикеты после обжига размалываются и просеиваются.

Готовый материал, таким образом, имеет вид хрупких черных крупинок. Их величина - 1-3 мм. Отличительной особенностью таких материалов выступает их большой насыпной вес.

Сталинит

Этот твердый сплав не содержит вольфрама, что обуславливает его низкую стоимость. Он также был изобретен в советские годы и достаточно широко используется в промышленности. Как показала практика, несмотря на то что этот твердый сплав не содержит вольфрама, он обладает высокими механическими характеристиками, в большинстве случаев удовлетворяющими технические требования. Сталинит обладает значительными преимуществами перед вольфрамовыми материалами. В первую очередь это низкая (1300-1350 градусов) температура плавления. Вольфрамовые материалы подвергаются изменениям, только начиная с 2700 градусов. Температура плавления в 1300-1350 градусов значительно облегчает наплавку, повышает ее производительность. В качестве основы сталинита используется смесь дешевых порошкообразных ферросплавов, ферромарганца и феррохрома. Изготовление этого материала аналогично процессу производства вольфрамовых соединений. В сталините присутствует 16-20% хрома, 13-17% марганца.

Применение

В современной промышленности твердые сплавы получили широкое распространение. При этом материалы постоянно совершенствуются. Развитие этого производственного сектора осуществляется в двух направлениях. В первую очередь улучшаются составы сплавов, совершенствуется технология их изготовления. Кроме этого, внедряются инновационные способы нанесения соединений на изделия. Твердосплавный инструмент способствует существенному повышению производительности труда. Это обеспечивается высокой сопротивляемостью износа и теплостойкостью изделий. Подобные характеристики позволяют осуществлять работу на скоростях, в 3-5 раз превышающих показатели для стали. Такими достоинствами, например, обладают современные борфрезы. Твердосплавные материалы, изготавливаемые с применением передовых технологий (электрохимических и электрофизических способов), в том числе с использованием алмазных заготовок, являются сегодня одними из самых востребованных в промышленности.

Разработки

Сегодня в отечественной промышленности проводятся различные исследования, включающие глубокий анализ возможности повышения характеристик твердых сплавов. Главным образом они касаются гранулометрического и химического состава материалов.

В качестве довольно удачного примера за последние несколько лет можно привести соединения группы ТСН. Такие сплавы специально разработаны для узлов трения, работающих в агрессивной кислотной среде. Эта группа продолжает разработки новых соединений в группе ВН, предложенных Всероссийским НИИТС.

При проведении исследований было установлено, что при уменьшении размера зерна карбидной фазы значительно повышаются такие характеристики, как прочность и твердость сплавов. Использование технологий регулирования и плазменного восстановления гранулометрического состава на сегодняшний день позволяют выпускать материалы, величина фракции в которых менее микрона. Сплавы марки ТСН сегодня широко используются в производстве узлов нефтегазовых и химических насосов.

Российская промышленность

Одним из передовых предприятий, занятых в сфере производства и научных разработок, выступает Кировоградский завод твердых сплавов. КЗТС обладает обширным собственным опытом по внедрению инновационных технологий в производство. Это позволяет ему занимать первые позиции на промышленном рынке России. Предприятие специализируется на выпуске спеченных твердосплавных инструментов и изделий, металлических порошков. Выпуск налажен с января 1942 года. В конце 90-х годов на предприятии была проведена модернизация. В течение последних нескольких лет Кировоградский завод твердых сплавов направляет свою деятельность на выпуск усовершенствованных многогранных сменных пластин с износостойкими многослойными покрытиями. Предприятие занимается также разработкой новых безвольфрамовых составов.

Заключение

Положительный опыт многих промышленных предприятий позволяет предположить, что в ближайшее время безвольфрамовые сплавы не только станут еще более популярными, но и смогут заменить другие материалы, используемые для производства штамповой и режущей продукции, элементов машин, осуществляющих работу в тяжелых условиях, приспособлений и оснастки. Сегодня уже создана целая группа соединений на основе карбонитрида и карбида титана. Они применяются во многих производственных сферах. Широко распространены, в частности, твердые сплавы ТВ4, ЛЦК20, КТН16, ТН50, ТН20. К новым разработкам относят материалы групп тантала TaC, ниобия NbC, гафния HfC, титана TiC. Выпуск инструментов с применением этих сплавов позволяет заменить вольфрам относительно дешевыми добавками, расширив, таким образом, номенклатуру используемого сырья. Это, в свою очередь, обеспечивает выпуск изделий, обладающих специфическими свойствами, более высокими эксплуатационными характеристиками.

Инструментальными являются материалы, основное назначение которых - оснащение рабочей части инструментов. К ним относятся инструментальные углеродистые, легированные и быстрорежущие стали, твердые сплавы, минералокерамика, сверхтвердые материалы.

Основные свойства инструментальных материалов

Инструментальный материал Теплостойкость 0 С Предел прочности при изгибе, МПа Микротвер-дость, НV Коэффициент тепло-проводности, Вт/(мЧК)
Углеродистая сталь

Легированная сталь

Быстрорежущая сталь

Твердый сплав

Минералокерамика

Кубический нитрид

8.1. Инструментальные стали.

По химическому составу, степени легированности инструментальные стали разделяются на инструментальные углеродистые, инструментальные легированные и быстрорежущие стали. Физико-механические свойства этих сталей при нормальной температуре достаточно близки, различаются они теплостойкостью и прокаливаемостью при закалке.

В инструментальных легированных сталях массовое содержание легирующих элементов недостаточно, чтобы связать весь углерод в карбиды, поэтому теплостойкость сталей этой группы лишь на 50-100 0 С превышает теплостойкость инструментальных углеродистых сталей. В быстрорежущих сталях стремятся связать весь углерод в карбиды легирующих элементов, исключив при этом возможность образования карбидов железа. За счет этого разупрочнение быстрорежущих сталей происходит при более высоких температурах.

Инструментальные углеродистые (ГОСТ 1435-74) и легированные (ГОСТ 5950-73) стали. Основные физико-механические свойства инструментальных углеродистых и легированных сталей приведены в таблицах. Инструментальные углеродистые стали обозначаются буквой У, за которой следует цифра, характеризующая массовое содержание углерода в стали в десятых долях процента. Так, в стали марки У10 массовое содержание углерода составляет один процент. Буква А в обозначении соответствует высококачественным сталям с пониженным массовым содержанием примесей.

Химический состав углеродистых инструментальных сталей

Марка стали

Марка стали

фосфора – 0,035%, хрома – 0,2%

никеля – 0,25%, меди – 0,25%

Фосфора – 0,03%, хрома – 0,15%

меди – 0,2%

В инструментальных легированных сталях первая цифра, характеризует массовое содержание углерода в десятых долях процента (если цифра отсутствует, то содержание углерода в ней до одного процента). Буквы в обозначении указывают на содержание соответствующих легирующих элементов: Г - марганец, Х - хром, С - кремний, В - вольфрам, Ф - ванадий, а цифры обозначают содержание элемента в процентах. Инструментальные легированные стали глубокой прокаливаемости марок 9ХС, ХВСГ, Х, 11Х, ХВГ отличаются малыми деформациями при термической обработке.

Химический состав малолегированных инструментальных сталей

Марка стали

ё 0,4

ё 0,3

ё 0,35

ё 0,35

ё 0,35

ё 0,3

Примечания:

  1. Химический состав малолегированной стали В1 установлен так, чтобы сохранить преимущества углеродистых сталей, улучшив закаливаемость и снизив чувствительность к перегреву
  2. Стали типа ХВ5 имеют повышенную твердость (HRC до 70) из-за большого содержания углерода и сниженного содержания марганца
  3. Хромистые стали типа Х относятся к сталям повышенной прокаливаемости
  4. Стали, легированные марганцем типа 9ХС, относятся к устойчивым против снижения твердости при отпуске

Эти материалы имеют ограниченные области применения: углеродистые идут, в основном, для изготовления слесарных инструментов, а легированные - для резьбообразующих, деревообрабатывающих и длинномерных инструментов (ХВГ)- протяжек, разверток и т.д.

8.2. Быстрорежущие стали (ГОСТ 19265-73)

Химический состав и прочностные характеристики основных марок этих сталей приведены в таблицах. Быстрорежущие стали обозначаются буквами, соответствующими карбидообразующим и легирующим элементам: Р - вольфрам, М - молибден, Ф - ванадий, А - азот, К - кобальт, Т - титан, Ц - цирконий). За буквой следует цифра, обозначающая среднее массовое содержание элемента в процентах (содержание хрома около 4 процентов в обозначении марок не указывается).

Цифра, стоящая в начале обозначения стали, указывает содержание углерода в десятых долях процента (например, сталь 11Р3АМ3Ф2 содержит около 1,1 % С; 3 % W; 3 % Мо и 2 % V). Режущие свойства быстрорежущих сталей определяются объемом основных карбидообразующих элементов: вольфрама, молибдена, ванадия и легирующих элементов- кобальта, азота. Ванадий в связи с малым массовым содержанием (до 3%) обычно не учитывается, и режущие свойства сталей определяются, как правило, вольфрамовым эквивалентом, равным (W+2Mo)%. В прейскурантах на быстрорежущие стали выделяют три группы сталей: стали 1-й группы с вольфрамовым эквивалентом до 16 % без кобальта, стали 2-й группы - до 18 % и содержанием кобальта около 5 %, 2ста 0ли 3-й группы - до 20 % и содержанием кобальта 5-10 %. Соответственно, различаются и режущие свойства этих групп сталей.

Химический состав быстрорежущих сталей

Марка стали

ё 0,5

ё 0,5

ё 0,5

ё 0,5

ё 0,5

Химический состав литых быстрорежущих сталей

Марка стали

Кроме стандартных, применяются и специальные быстрорежущие стали, содержащие, например, карбонитриды титана. Однако высокая твердость заготовок этих сталей, сложность механической обработки не способствующих широкому распространению. При обработке труднообрабатываемых материалов находят применение порошковые быстрорежущие стали Р6М5-П и Р6М5К5-П. Высокие режущие свойства этих сталей определяются особой мелкозернистой структурой, способствующей повышению прочности, уменьшению радиуса скругления режущей кромки, улучшенной обрабатываемости резанием и в особенности шлифованием. В настоящие время проходят промышленные испытания безвольфрамовые быстрорежущие стали с повышенным содержанием различных легирующих элементов, в том числе алюминия, малибдена, никеля и других

Один из существенных недостатков быстрорежущих сталей связан с карбидной неоднородностью, т.е. с неравномерным распределением карбидов по сечению заготовки, что приводит, в свою очередь, к неравномерной твердости режущего лезвия инструмента и его износа. Этот недостаток отсутствует у порошковых и мартенситно-стареющих (с содержанием углерода менее 0,03%) быстрорежущих сталей.

Марка стали

Примерное назначение и технологические особенности

Может использоваться для всех видов режущего инструмента при обработке обычных конструкционных материалов. Обладает высокой технологичностью.

Примерно для тех же целей, что и сталь Р18. Хуже шлифуется.

Для инструментов простой формы, не требующих большого объёма шлифовальных операций; применяется для обработки обычных конструкционных материалов; обладает повышенной пластичностью и может использоваться для изготовления инструментов методами пластической деформации; шлифуемость пониженная.

Для всех видов режущих инструментов. Возможно использовать для инструментов, работающих с ударными нагрузками; более узкий, чем у стали Р18 интервал закалочных температур, повышенная склонность к обезуглероживанию.

Чистовые и получистовые инструменты / фасонные резцы, развёртки, протяжки и др. / при обработке конструкционных сталей.

То же, что и сталь Р6М5, но по сравнению со сталью Р6М обладает несколько большей твёрдостью и меньшей прочностью.

Используются для изготовления инструментов простой формы, не требующих большого объёма шлифовальных операций рекомендуется для обработки материалов с повышенными абразивными свойствами / стеклопластики, пластмассы, эбонит и т.п. / для чистовых инструментов, работающих со средними скоростями резания и малыми сечениями среза; шлифуемость пониженная.

Для чистовых и получистовых инструментов, работающих со средними скоростями резания; для материалов с повышенными абразивными свойствами; рекомендуется взамен сталей Р6Ф5 и Р14Ф4, как сталь лучшей шлифуемости при примерно одинаковых режущих свойствах.

Р9М4К8, Р6М5К5

Для обработки высокопрочных нержавеющих, жаропрочных сталей и сплавов в условиях повышенного разогрева режущей кромки; шлифуемость несколько понижена.

Р10К5Ф5, Р12К5Ф5

Для обработки высокопрочных и твёрдых сталей и сплавов; материалов обладающих повышенными абразивными свойствами; шлифуемость низкая.

Для обработки сталей и сплавов повышенной твёрдости; чистовая и получистовая обработка без вибраций; шлифуемость пониженная.

Для инструментов простой формы при обработке углеродистых и легированных сталей с прочностью не более 800 МПа.

Р6М5К5-МП, Р9М4К8-МП (порошко-вые)

Для тех же целей, что и стали Р6М5К5 и Р9М4К8; обладают лучшей шлифуемостью, менее деформируются при термообработке, обладают большей прочностью, показывают более стабильные эксплуатационные свойства.

8.3. Твердые сплавы (ГОСТ 3882-74)

Твердые сплавы содержат смесь зерен карбидов, нитридов, карбонитридов тугоплавких металлов в связующих материалах. Стандартные марки твердых сплавов выполнены на основе карбидов вольфрама, титана,тантала. В качестве связки используется кобальт. Состав и основные свойства некоторых марок твердых сплавов для режущих инструментов приведены в таблице.

Физико-механические свойства одно-, двух- и трехкарбидных твердых сплавов

Состав физико-механические свойства безвольфрамовых твердых сплавов

В зависимости от состава карбидной фазы и связки обозначение твердых сплавов включает буквы, характеризующие карбидообразующие элементы (В - вольфрам, Т - титан, вторая буква Т - тантал) и связку (буква К- кобальт). Массовая доля карбидообразующих элементов в однокарбидных сплавах, содержащих только карбид вольфрама, определяется разностью между 100% и массовой долей связки (цифра осле буквы К), например, сплав ВК4 содержит 4% кобальта и 96% WC. Вдвухкарбидных WC+TiC сплавах цифра после буквы карбидообразующего элемента определяется массовая доля карбидов этого элемента, следующая цифра - массовая доля связки, остальное - массовая доля карбида вольфрама (например, сплав Т5К10 содержит 5% TiC,10% Co и 85% WC).

В трехкарбидных сплавах цифра после букв ТТ означает массовую долю карбидов титана и тантала. Цифра за буквой К - массовая доля связки, остальное- массовая доля карбида вольфрама (например, сплав ТТ8К6 содержит 6% кобальта, 8% карбидов титана и тантала и 86% карбида вольфрама).

В металлообработке стандартом ISO выделены три группы применяемости твердосплавного режущего инструмента: группа Р - для обработки материалов, дающих сливную стружку; группа К - стружку надлома и группа М - для обработки различных материалов (универсальные твердые сплавы). Каждая область разделяется на группы и подгруппы.

Твердые сплавы, в основном, выпускаются в виде различных по форме и точности изготовления пластин: напайных (наклеиваемых) - по ГОСТ 25393-82 или сменных многогранных - по ГОСТ 19043-80 - 19057-80 и другим стандартам.

Многогранные пластины выпускаются как из стандартных марок твердых сплавов, так и из этих же сплавов с однослойными или многослойными сверхтвердыми покрытиями из TiC, TiN, оксида алюминия и других химических соединений. Пластины с покрытиями обладают повышенной стойкостью. К обозначению пластин из стандартных марок твердых сплавов с покрытием нитридов титана добавляют - маркировку букв КИБ (ТУ 2-035-806-80), а к обозначению сплавов по ISO - букву С.

Выпускаются также пластины и из специальных сплавов (например, по ТУ 48-19-308-80). Сплавы этой группы (группы "МС") обладают более высокими режущими свойствами. Обозначение сплава состоит из букв МС и трехзначного (для пластин без покрытий)или четырехзначного (для пластин с покрытием карбидом титана) числа:

1-я цифра обозначения соответствует области применения сплава по классификации ISO (1 - обработка материалов, дающих сливную стружку; 3 - обработка материалов, дающих стружку надлома; 2 - область обработки, соответствующая области М по ISO);

2-я и 3-я цифры характеризуют подгруппу применяемости, а 4-я цифра - наличие покрытия. Например, МС111 (аналог стандартного Т15К6), МС1460 (аналог стандартного Т5К10) и т.д.

Кроме готовых пластин выпускаются также заготовки в соответствии с ОСТ 48-93-81; обозначение заготовок то же, что и готовых пластин, но с добавлением буквы З.

Безвольфрамовые твердые сплавы широко применяются как материалы, не содержащие дефицитных элементов. Безвольфрамовые сплавы поставляются в виде готовых пластин различной формы и размеров, степеней точности U и М, а также заготовок пластин. Области применения этих сплавов аналогичны областям использования двухкарбидных твердых сплавов при безударных нагрузках.

Применяется для

Чистового точения с малым сечением среза, окончательного нарезания резьбы, развертывания отверстий и других аналогичных видов обработки серого чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, фибры, пластмассы, стекла, стеклопластиков и т.д.). Резки листового стекла

Чистовой обработки (точения, растачивания, нарезания резьбы, развертывания) твердых, легированных и отбеленных чугунов, цементированных и закаленных сталей, а также высокоабразивных неметаллических материалов.

Чернового точения при неравномерном сечении среза чернового и чистового фрезерования, рассверливания и растачивания нормальных и глубоких отверстий, чернового зенкерования при обработке чугуна, цветных металлов и сплавов, титана и его сплавов.

Чистовой и получистовой обработки твердых, легированных и отбеленных чугунов, закаленных сталей и некоторых марок нержавеющих высокопрочных и жаропрочных сталей и сплавов, особенно сплавов на основе титана, вольфрама и молибдена (точения, растачивания, развертывания, нарезания резьбы, шабровки).

Получистовой обработки жаропрочных сталей и сплавов, нержавеющих сталей аустенитного класса, специальных твердых чугунов, закаленного чугуна, твердой бронзы, сплавов легких металлов, абразивных неметаллических материалов, пластмасс, бумаги, стекла. Обработки закаленных сталей, а также сырых углеродистых и легированных сталей при тонких сечениях среза на весьма малых скоростях резания.

Чистового и получистового точения, растачивания, фрезерования и сверления серого и ковкого чугуна, а также отбеленного чугуна. Непрерывного точения с небольшими сечениями среза стального литья, высокопрочных, нержавеющих сталей, в том числе и закаленных. Обработки сплавов цветных металлов и некоторых марок титановых сплавов при резании с малыми и средними сечениями среза.

Чернового и получернового точения, предварительного нарезания резьбы токарными резцами, получистового фрезерования сплошных поверхностей, рассверливания и растачивания отверстий, зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов.

Чернового течения при неравномерном сечении среза и прерывистом резании, строгании, чернового фрезерования, сверления, чернового рассверливания, чернового зенкерования серого чугуна, цветных металлов и их сплавов и неметаллических материалов. Обработки нержавеющих, высокопрочных и жаропрочных труднообрабатываемых сталей и сплавов, в том числе сплавов титана.

Черновой и получерновой обработки твердых, легированных и отбеленных чугунов, некоторых марок нержавеющих, высокопрочных и жаропрочных сталей и сплавов, особенно сплавов на основе титана, вольфрама и молибдена. Изготовления некоторых видов монолитного инструмента.

Сверления, зенкерования, развертывания, фрезерования и зубофрезерования стали, чугуна, некоторых труднообрабатываемых материалов и неметаллов цельнотвердосплавным, мелкоразмерным инструментом. Режущего инструмента для обработки дерева. Чистового точения с малым сечением среза (т па алмазной обработки); нарезания резьбы и развертывания отверстий незакаленных и закаленных углеродистых сталей.

Получернового точения при непрерывном резании, чистового точения при прерывистом резании, нарезания резьбы токарными резцами и вращающимися головками, получистового и чистового фрезерования сплошных поверхностей, рассверливания и растачивания предварительно обработанных отверстий, чистового зенкерования, развертывания и других аналогичных видов обработки углеродистых и легированных сталей.

Чернового точения при неравномерном сечении среза и непрерывном резании, получистового и чистового точения при прерывистом резании; чернового фрезерования сплошных поверхностей; рассверливания литых и кованых отверстий, чернового зенкерования и других подобных видов обработки углеродистых и легированных сталей.

Чернового точения при неравномерном сечении среза и прерывистом резании, фасонного точения, отрезки токарными резцами; чистового строгания; чернового фрезерования прерывистые поверхностей и других видов обработки углеродистых и легированных сталей, преимущественно в виде поковок, штамповок и отливок по корке и окалине.

Тяжелого чернового точения стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включении, при неравномерном сечении среза и наличии ударов. Всех видов строгания углеродистых и легированных сталей.

Тяжелого чернового точения стальных поковок, штамповок и отливок по корке с раковинами при наличии песка, шлака и различных неметаллических включений при равномерном сечении среза и наличии ударов. Всех видов строгания углеродистых и легированных сталей. Тяжелого чернового фрезерования и углеродистых и легированных сталей.

Черновой и получистовой обработки некоторых марок труднообрабатываемых материалов, нержавеющих сталей аустенитного класса, маломагнитных сталей и жаропрочных сталей и сплавов, в том числе титановых.

Фрезерования стали, особенно фрезерования глубоких пазов и других видов обработки, предъявляющих повышенные требования к сопротивлению сплава тепловыми механическим циклическим нагрузкам.

8.4. Минералокерамика (ГОСТ 26630-75) и сверхтвердые материалы

Минералокерамические инструментальные материалы обладают высокой твердостью, тепло- и износостойкостью. Их основой являются глинозем (оксид кремния)- оксидная керамика или смесь оксида кремния с карбидами, нитридами и другими соединениями (керметы). Основные характеристики и области применения различных марок минералокерамики приведены в таблице. Формы и размеры сменных многогранных керамических пластин определены стандартом ГОСТ 25003-81*.

Кроме традиционных марок оксидной керамики и керметов широко применяются оксидно-нитридная керамика (например, керамика марки "кортинит" (смесь корунда или оксида алюминия с нитридом титана) и нитридно-кремниевая керамика- "силинит-Р" .

Физико-механические свойства инструментальной керамики

Обрабатываемый материал

Твёрдость

Марка керамики

Чугун серый

ВО-13, ВШ-75, ЦМ-332

Чугун ковкий

ВШ-75, ВО-13

Чугун отбеленный

ВОК-60, ОНТ-20, В-3

Сталь конструкционная углеродистая

ВО-13, ВШ-75, ЦМ-332

Сталь конструкционная легированная

ВО-13, ВШ-75, ЦМ-332

Сталь улучшенная

ВШ-75, ВО-13, ВОК-60 Силинит-Р

Сталь цементуемая закалённая

ВОК-60,ОНТ-20, В-3

ВОК-60, В-3, ОНТ-20

Медные сплавы

Никелевые сплавы

Силинит-Р, ОНТ-20

Синтетические сверхтвердые материалы изготавливаются либо на основе кубического нитрида бора - КНБ, либо на основе алмазов.

Материалы группы КНБ обладают высокой твердостью, износостойкостью, низким коэффициентом трения и инертностью к железу. Основные характеристики и эффективные области использования приведены в таблице.

Физико-механические свойства СТМ на основе КНБ

В последнее время к этой группе относятся и материалы, содержащие композицию Si-Al-O-N (торговая марка "сиалон"), в основе которых нитрид кремния Si3N4.

Синтетические материалы поставляются в виде заготовок или готовых сменных пластин.

На основе синтетических алмазов известны такие марки, как АСБ - алмаз синтетический "баллас", АСПК - алмаз синтетический "карбонадо" и другие. Достоинства этих материалов - высокая химическая и коррозионная стойкость, минимальные радиусы закругления лезвий и коэффициент трения с обрабатываемым материалом. Однако, алмазы имеют существенные недостатки: низкая прочность на изгиб (210-480 МПа); химическая активность к некоторым жирам содержащимся в охлаждающей жидкости; растворение в железе при температурах 750-800 С, что практически исключает возможность их использования для обработки сталей и чугуна. В основном, поликристаллические искусственные алмазы применяются для обработки алюминия, меди и сплавов на их основе.

Назначение СТМ на основе кубического нитрида бора

Марка материала

Область применения

Композит 01 (Эльбор Р)

Тонкое и чистовое точение без удара и торцовое фрезерование закалённых сталей и чугунов любой твёрдости, твёрдых сплавов (Co=> 15%)

Композит 03 (Исмит)

Чистовая и получистовая обработка закалённых сталей и чугунов любой твёрдости

Композит 05

Предварительное и окончательное точение без удара закалённых сталей (HRC э <= 55) и серого чугуна, торцовое фрезерование чугуна

Композит 06

Чистовое точение закалённых сталей (HRC э <= 63)

Композит 10 (Гексанит Р)

Предварительное и окончательное точение с ударом и без удара, торцовое фрезерование сталей и чугунов любой твёрдости, твёрдых сплавов (Co=> 15%), прерывистое точение, обработка наплавленных деталей.

Черновое, получерновое и чистовое точение и фрезерование чугунов любой твёрдости, точение и растачивание сталей и сплавов на основе меди, резание по литейной корке

Композит 10Д

Предварительное и окончательное точение, в том числе с ударом, закалённых сталей и чугунов любой твёрдости, износостойких плазменных наплавок, торцовое фрезерование закалённых сталей и чугунов.

Одной из самых эффективных способов резки и обработки твердых материалов является гидроабразивная резка. С ее использованием можно резать такие твердые материалы как мрамор и гранит, металл, бетон и стекло. Данный вид резки широко применяется в строительстве при обработке композитных и керамических материалов, сендвич-конструкций.

Метод гидроабразивной резки заключается в узконаправленной струе воды под большим давлением, бьющей на высокой скорости по материалу. Изначально использовалась только вода, и метод назывался водоструйной резкой. Она применялась для обработки не слишком твердых материалов, которым требовалась более деликатное воздействие, чем при других видах резки. Это было оптическое волокно и кабели, ламинированные материалы, не терпящие высоких температур и возникновения пожароопасной ситуации.

Позже в воду начали добавлять абразив, который значительно усилил режущую силу водяной струи. В качестве абразива используются мелкодисперсный гранатовый песок. С использованием абразивных частиц стало возможным нарезать гораздо более твердые материалы, такие как горные породы и металлы.

В связи с этим гидроабразивная резка широко используется в различных сферах промышленности, в строительстве и при изготовлении памятников. Зачастую для изготовления памятников используется гранит, и цены на памятники в Москве позволяют сделать выбор на любой кошелек. Однако не все задумываются о том, что при заказе памятника имеет значение не только стоимость материала и работы, но и способ обработки.

Гидроабразивную резку можно назвать очень щадящей в том смысле, что нет интенсивного воздействия на материал, а значит, его прочность не снижается. На заказ памятников цены складываются исходя в том числе из способа резки и обработки камня. Гидроабразивная резка позволяет избежать трещин и сколов, а также минимизирует потерю камня при обработке. Это лишь одно из преимуществ гидроабразивной резки.

Гидроабразивная резка: преимущества и особенности

1. Отсутствие сильного нагрева материала

Этот параметр критичен как для металла, так и для природного и искусственного камня, плитки. При резке водяной струей с абразивом температура сохраняется в диапазоне 60-90ºС. Таким образом, материал не подвергается воздействию высоких температур, как при других видах резки, что увеличивает его срок эксплуатации.

2. Универсальность применения

При помощи гидроабразивного "лезвия" можно одинаково успешно разрезать как твердые, так и средней твердости материалы. Правда, в случае работы с последними абразив использовать не нужно.

3. Отличное качество реза

Шероховатость кромки среза при использовании гидроабразивной резки — Ra 1,6. Использование этого способа поможет получить четкий срез без лишней пыли и потери материала.

4. Пожаробезопасность

Все компоненты, используемые при резке, пожаро- и взрывобезопасны в том числе и за счет низкой температуры. При резке не используются воспламеняющиеся вещества, что существенно снижает риск при работе.

5. Отсутствие оплавления материала

Это свойство также вытекает из температуры при разрезе. При резке материал не пригорает ни в прилегающих зонах, ни непосредственно на срезе, что особенно актуально при работе с металлами.

6. Многопрофильное использование

Используя гидроабразивную резку, можно разрезать как лист стали толщиной 200 мм, так и множество тонких листов, сложенных вместе. Это позволяет экономить время и повышает производительность.

К недостаткам можно отнести дороговизну расходного материала (а именно песка) и ограниченный ресурс режущей головки и некоторых других комплектующих станка. Станок для гидроабразивной резки состоит из насоса (нескольких), в которых нагнетается вода под давлением до 4000 бар, сопла, смесительной камеры и второго твердосплавного сопла.

Как происходит гидроабразивная резка:

При помощи насоса закачивается вода под давлением до 4000 бар;

Вопрос финишной обработки закаленной стали решается в современном производстве в основном абразивной обработкой. До последнего времени это объяснялось разным уровнем оборудования для шлифования и лезвийной обработки. Токарные станки не могли гарантировать ту же точность, что достигалась на шлифовальных станках. Но сейчас современные станки с ЧПУ имеют достаточную точность перемещений и жесткость, поэтому доля токарной и фрезерной обработки твердых материалов постоянно расширяется во многих отраслях. Точение закаленных заготовок стало применяться в автомобильной промышленности с середины восьмидесятых годов прошлого века, но сегодня в этом виде обработки начинается новая эра.

Термообработанные заготовки

Множество стальных деталей требует термообработки или поверхностного упрочнения для приобретения дополнительной износостойкости и способности выдерживать значительные нагрузки. К сожалению, высокая твердость негативно отражается на обрабатываемости таких деталей. Детали зубчатых передач и различные валы и оси - типичные закаленные детали, обрабатываемые точением, фрезерованию в закаленном виде подвергаются штампы и пресс-формы. Термообработанные детали - тела качения, как правило, требуют чистовой и финишной обработки, которая убирает погрешности формы и обеспечивает требуемую точность и качество поверхностей. Что касается деталей штампов и пресс-форм, то сейчас есть тенденция к их обработке в закаленном состоянии уже на стадии черновой обработки. Это приводит к значительному сокращению времени изготовления штампа.

Обработка твердых материалов

Обработка деталей после термообработки - вопрос, требующий гибкого подхода. Диапазон решений зависит от типа инструментального материала, выбранного для обработки. Для инструмента способность обрабатывать твердые материалы означает - высокую термостойкость, высокую химическую инертность, стойкость к абразивному износу. Такие требования к инструментальному материалу определяются самим процессом обработки. При резании твердых материалов на режущую кромку оказывается высокое давление, что сопровождается выделением большого количества тепла. Большие температуры помогают процессу, приводя к разупрочнению стружки, тем самым, снижая силы резания, но отрицательно влияют на инструмент. Поэтому далеко не все инструментальные материалы подходят для обработки термообработанных деталей.

Твердые сплавы используются для обработки материалов твердостью до 40HRc. Для этого рекомендуются мелкозернистые твердые сплавы с острой режущей кромкой, хорошо сопротивляющиеся абразивному износу и обладающие высокой термостойкостью и стойкостью к пластической деформации. Такие свойства имеют твердые сплавы без покрытий, например H13A производства фирмы Sandvik Coromant. Но также можно успешно использовать сплавы с износостойкими покрытиями для чистовой обработки и областью применения P05 и К05, например GC4015, GC3005.

Самая неудобная для обработки резанием заготовка - это заготовка с твердостью 40…50HRc. Твердые сплавы при работе в этом диапазоне уже не устраивают по своей термостойкости. В то же время, КНБ и керамика быстро изнашивается, т.к. из-за недостаточной твердости обрабатываемого материала на передней поверхности инструмента образуется нарост, вызывающий сколы режущей кромки при его срыве. Поэтому проблема выбора инструментального материала для работы в этом диапазоне твердости решается на основе экономических соображений. В зависимости от серийности производства приходится либо мириться с низкой производительностью и размерной точностью при работе твердым сплавом, либо более производительно работать керамикой и КНБ, но с риском поломки пластины.

При более высокой твердости 50-70HRс выбор однозначно склоняется в сторону обработки с использованием инструмента с режущей частью из керамики или кубического нитрида бора. Керамика позволяет производить даже прерывистую обработку, но обеспечивает несколько большую шероховатость поверхности, чем КНБ. При обработке КНБ может быть достигнута шероховатость до 0,3Ra, в то время как керамика создает поверхность шероховатостью 0,6Ra. Это объясняется различными моделями износа инструментального материала: КНБ имеет в нормальных условиях равномерный износ по задней поверхности, а на керамике образуются микровыкрашивания. Таким образом, КНБ сохраняет линию режущей кромки непрерывной, что позволяет получать лучшие значения шероховатости обработанной поверхности. Режимы резания при обработке закаленных материалов варьируется в довольно широких пределах. Это зависит от материала заготовки, условий обработки и требуемого качества поверхности. При обработке заготовки с твердостью 60HRc новыми марками кубического нитрида бора СВ7020 или СВ7050 скорость резания может достигать 200 м/мин. СВ7020 рекомендуется для финишной обработки с непрерывным резанием, а СВ7050 для чистовой обработки термообработанных материалов в неблагоприятных условиях, т.е. с ударами. Пластины из указанных марок выпускаются с тонким покрытием из нитрида титана. По мнению фирмы Sandvik Coromant данная мера позволяет значительно проще контролировать износ пластин. Фирмой также выпускаются пластины из аналогичных марок кубического нитрида бора CB20 и CB50, но без покрытия.

Для обработки закаленных сталей обычно используются различные сорта керамики. Фирма Sandvik Coromant в настоящее время выпускает все виды керамики и активно ведет разработки новых марок. Оксидная керамика СС 620 выпускается на основе оксида алюминия с небольшими добавками оксида циркония для повышения прочности. Она обладает самой высокой износостойкостью, однако может использоваться только хороших условиях из-за невысокой прочности и теплопроводности. Более универсальна смешанная керамика СС650 на основе оксида алюминия с добавками карбида кремния. Она обладает более высокой прочностью и хорошей теплопроводностью, что позволяет использовать ее даже при прерывистой обработке. Наибольшей прочностью обладает так называемая вискеризованная керамика СС670. В состав которой, также входит карбид кремния, но в виде длинных кристаллических волокон, которые пронизывают основной материал. Основная область применения этой марки керамики - обработка жаропрочных сплавов на никелевой основе, но вследствие высокой прочности она применяется и для обработки закаленной стали в неблагоприятных условиях. Режимы резания при использовании пластин из керамики также как и в случае в кубическим нитридом бора варьируются в широких пределах. Это объясняется в большей степени не различиями в свойствах инструментального материала, а разнообразием условий обработки, когда достигается достаточный нагрев в зоне резания и соответственно снижение усилий и износа. Обычно оптимальная скорость резания лежит в диапазоне 50-200 м/ мин. Причем не обязательно снижение скорости резания приводит к повышению стойкости, как в случае с твердым сплавом.

Новые возможности

Производительность при обработке закаленных материалов до сего момента достигалась за счет изменения конструкции инструмента и усовершенствования оборудования. Сейчас, новые инструментальные материалы позволяют работать с высокими скоростями, а геометрия режущей части достигать высоких значений рабочих подач. Кроме того, возможность обработки деталей за один установ при токарной или фрезерной обработке дает значительное снижение вспомогательного времени.

Величина подачи зависит от геометрии вершины режущего инструмента. Для инструментов с вершиной оформленной по радиусу, подача оказывается жестко связанной с требованием обеспечения заданного качества поверхности. Обычное значение подачи 0,05…0,2 мм/об. Но сейчас на рынке появились пластины, именуемые Wiper, которые позволяют увеличить её. При обработке такими пластинами значение подачи на практике может быть увеличено вдвое, причем качество поверхности не пострадает. Эффект Wiper возникает за счет модификации вершины пластины и создания специальной зачистной режущей кромки большого радиуса, которая является продолжением основного радиуса скругления. Зачистная режущая кромка обеспечивает при работе пластины минимальный вспомогательный угол в плане, что позволяет увеличивать рабочую подачу без потери качества обработанной поверхности. При увеличении подачи вдвое сокращается и путь резания, а соответственно и износ пластины. Революционность этого решения в том, что повышение производительности достигается одновременно с увеличением ресурса инструмента.

Пластины Wiper были впервые предложены фирмой Sandvik Coromant и сейчас находят все большее распространение. Так, для пластин из КНБ и керамики уже существует два варианта геометрии Wiper. Геометрия WH - основная геометрия позволяющая достигнуть максимальной производительности. Дополнительная геометрия WG создаёт низкие усилия резания и применяется для высокоскоростной обработки при высоких требованиях к качеству обработанной поверхности.

Пластины Wiper из КНБ и керамики выводят чистовую и финишную обработку закаленных материалов на новые уровни производительности.

Основные преимущества обработки закаленных материалов точением:

  • высокая производительность за счет высоких скоростей резания и снижения вспомогательного времени;
  • высокая гибкость применения;
  • процесс проще, чем шлифование;
  • нет прижогов;
  • минимальные коробления заготовки;
  • дополнительное повышение производительности за счет высоких значений подачи при использовании пластин Wiper;
  • возможность унификации оборудования для полной обработки детали;
  • безопасный и экологически чистый процесс обработки.